
ChemCpp User-Guide

Jean-Luc Perret , Pierre Mahé

October 2006

Introduction
ChemCpp is a C++ project developed with KDEvelop 3.2.2. It consists of a C++ library to handle
molecule datasets, together with a set of binary programs for the manipulation of molecule structures
files, under the MDL MOL and SDF file formats1, and the computation of kernel matrices for datasets of
molecules. In particular ChemCpp provides tools to compute different kernel for graphs corresponding
to the 2D structures of molecules :

• the marginalized graph kernel [1] and its extensions [2],

• Tanimoto graph kernels [3],

• fast approximations of the marginalized [1] and geometric [4] kernels,

• tree-pattern graph kernels [5]

• pharmacophore kernels based on the 3D molecular structures [6].

We tried to make the installation and use of ChemCpp as easy as possible. Nevertheless, feel free to
contact the authors for any question/suggestion/problem/bug.

1 Project architecture and installation
1.1 Basic architecture
Uncompressing the ChemCpp.**.tar.gz project creates a chemcpp directory in the current location,
with the following sub-directories :

• the src directory : contains the C++ classes defining the ChemCpp library, see section 2.

• the tools directory : contains sub-directories corresponding to binary programs, or ’tools’, based
on the ChemCpp library, see section 3.

1See http://www.mdli.com/downloads/public/ctfile/ctfile.jsp for more details about these file for-
mats, and http://en.wikipedia.org/wiki/Chemical_file_format for a general discussion, including con-
version issues.

1

• the bin directory : contains symbolic links to the executables of the programs of the ’tools’
directories.

• the data directory : contains several files potentially required for ChemCpp tools. A README
file is included in the data directory for more details.

• the doc directory : gathers documentation about the ChemCpp project (in particular a user guide).

• the html directory : contains HTML documentation of the C++ classes of the src directory.
Documentation was generated by Doxygen, according to the Doxygen-configFile found
in the chemcpp directory. Please refer to the html/index.htmlHTML page for more details.

• the examples directory : contains pieces of codes illustrating the different classes of the project.
Note that these examples are included in the Doxygen generated documentation.

Moreover, the chemcpp.kdevelop is the chemcpp project file that can be opened with KDE-
velop.

1.2 Installation
In order to install ChemCpp simply:

• edit the file src/constant.h and define in line 19 the CHEMCPPPATH variable to be the
chemcpp directory created while uncompressing the .tar.gz project file

• in the chemcpp directory, type : ./configure to generate the project Makefiles, and build the
project with make

• add the chemcpp/bin directory to your PATH environment variable, and the chemcpp/src
directory to your LD_LIBRARY_PATH environment variable

and you’re done: all the tools executables can be run in command line (type aToolName -h to get a
description of the tool aToolName).

Note that during the building process :

• the C++ classes of the chemcpp/srcdirectory are compiled, and the shared library libchemcpp.so
is created in the chemcpp/src directory.

• the main programs of the subdirectories of the chemcpp/tools directory are compiled based
on the chemcpp/src/libchemcpp.so shared library, and executables are created in every
chemcpp/tools subdirectory.

The chemcpp/bin directory contains symbolic links to the different "tools" executable programs. It
must therefore be included in the PATH environment variable so that the tools can be called in command
lines. Moreover, the chemcpp/src directory must be included in the LD_LIBRARY_PATH so that
the shared library libchemcpp.so can be found at runtime by the different tools executables.

2

2 C++ classes and ChemCpp library : the "src" directory
Below is a brief description of the different C++ classes of the chemcpp/src directory that constitute
the libchemcpp.so shared library. Please refer to the HTML documentation to be found in the
chemcpp/html directory for more details (just open the file chemcpp/html/index.html in
your favorite browser). Note however that even the HTML documentation is not fully complete, but will
be soon. Here is the list of the C++ classes :

• Descriptor: this class implements a general storage type for a scientific descriptors with label,
value, unit and comment members.

• DataContainer: this class implements a generic collection of Descriptor instances. The
main methods concern the addition or modification of Descriptor instances into the container.
This class is the parent class of the classes Elements, Node (itself the parent of class Atom),
and Molecule (itself parent of class KcfMolecule). This therefore means that any descriptor
can be added at runtime for these derived classes.

• Node: molecules are seen as graphs in ChemCpp, and Node implements the notion of graph
vertex. The main field of a Node instance consist of a (String) label, and a pair of start/end
probabilities related to the random walk model involved in the marginalized kernel [1] . It is the
parent class of Atom.

• Atom: implements the notion of atom. Atom is a daughter of Node, itself a daughter class
of DataContainer. Any user descriptor can therefore be included into the atom description.
However, several descriptors are included as native descriptors, e.g., Atomic Number, type, (x,y,z)
coordinates, Morgan label, partial charge. Moreover, an Atom instance is associated a vector of
Bond pointers (the bonds for which it constitutes the ’source’ atom) arranged in a Hash indexed
by the ’target’ atoms. Main methods concern the manipulation of the class members, e.g., corre-
sponding Bond instances, Morgan index, partial charges.

• Bond: implements the notion of chemical bond between atoms. Main attributes of a Bond in-
stance are a pair of pointers on Atom instances : a ’source’ and ’target’ atom. Bonds consid-
ered are directed, which means that a covalent bond in a molecule gives rise to a pair of bonds
having opposite ’source’ and ’target’ atom pointers. Another important attribute is the bond la-
bel that describes the bond type (see constants.h). Note that since Bond is a daughter class of
DataContainer, other Descriptors may be added at runtime.

• Ring: implements the notion of ring. A ring is defined as a collection of Bonds.

• Molecule: implements the notion of molecule. It is basically defined as a vector of Atom
instances (nb : the covalent bonds of the molecule are owned by these Atom instances). Main
methods include Construction methods (e.g., to read a molecule from a file, introduce the bonds in
the Atom instances, define a product-graph molecule representation [2], or a 3D-graph molecule
representation [6]), Manipulation methods (e.g., to hide bonds in the molecule, introduce Mor-
gan indices, or transform the molecule into a representation preventing ’tottering paths’ in the
marginalized graph kernel [2]), Kernel related methods (marginalized [1] or 3D-pharmacophore
related [6]), and Output functions (e.g., to write the molecule instance in an output file).

3

• KcfMolecule: this class is derived from the Molecule class, and provides several functions
for molecules represented in KEGG Chemical Function (KCF) format2.

• MoleculeSet: represents the notion of a database of molecules. It is derived from a vector
of pointers to Molecule instances. Among its attributes are a pair of Double matrices corre-
sponding to the ’raw’ kernel matrix (Moleculeset::gram) and to the ’normalized’ kernel matrix
(MoleculeSet::gramNormal). Main methods can be grouped into distinct categories : Input meth-
ods (e.g., to read molecules or molecular descriptors from files), Manipulation methods (to per-
form diverse operations on the molecules of the database), Kernel related methods (to build the
kernel matrices associated to the molecule set for a particular kernel function), and Output meth-
ods (e.g., to write the set of molecules after their manipulation, or to write Gram matrices after
kernel computation).

• Elements: this class instantiates the chemical elements (each of class Atom) and load their
physico-chemical properties.

• MoleculeUtils: this class gathers several utilities functions, and in particular functions to
read and write files, and functions related to the different kernels between molecules (e.g., basic
kernels to compare nodes or edges of the graphs associated to molecules).

• JlpIOutils: this class provides several utilities for general Input/Output operations.

• Cerror: implements a class of error that can be raised by the classes of the ChemCpp project.
An instance of Cerror is defined by a type, identifying the error occurring, and a comment, the
message output when the error is raised. Several error types are defined.

• StringUtils: gathers a collection of string processing utilities.

3 ChemCpp executables : the "tools" directory
We now turn on to the description of the different utility programs implemented in the chemcpp/tools
subdirectories. These tools can be split into three categories : tools for the manipulation of MOL and
SDF files, tools for the computation of kernel matrices, and tools processing kernel matrices. These
tools are command lines tools. For a description of their usage, type their name with the option -h as
command line.

Below is a list of the different tools together with a brief description of their function and usage.
For now, we don’t go into the details of the data manipulation tools. However, an interested user can
probably figure out their function from their name and description. They are provided with no guarantee,
and we strongly encourage the user to check their effect on his data. The next section will be dedicated
to a detailed description of the tools producing kernel matrices.

2In a KCF description of a molecule, additional information is included in the atoms types depending on the neighborhood
properties of the atoms. See http://web.kuicr.kyoto-u.ac.jp/simcomp/doc/keggatom.html. More details
to come.

4

3.1 Manipulation tools
Some options are generic to the different data manipulation tools. Among them are :

• the -m option, which specifies the input data, that can be a single file (in most sd* tools), or
an input directory (in some mol* tools).

• the -o option, which specifies the output of the program, which can consist of a single file,
or a directory. Default values are proposed for this option. If this option specifies a directory, the
default output is the current location. If it specifies a file, the default output is a file located in the
current directory, or in the directory of the input file, depending on the nature of the tool.

• the -r option, which removes the Hydrogen atoms from the molecules.

• the -z option, which specifies that the molecules are under the KEGG Molecular Function
(KCF) format. See http://web.kuicr.kyoto-u.ac.jp/simcomp/doc/keggatom.html
for more details.

In addition, each tool may require other arguments. Option -h outputs the correct usage of the file
(required/optional parameters and default values).

3.1.1 File conversion

• mol2sd : merges a collection of mol files into a sd file.

• sd2mol : splits a given sd file into a collection of individual mol files.

• mol2mol : tries to converts an input mol file into a new mol file. Note that values for: bond
topology, mass diff, charge diff, stereo parity, hydrogen counts, stereocare box, valence, H0 des-
ignator, reaction component type, reaction component number, atom-atom mapping number, in-
version/retention flag, exact change flag are all lost in the conversion!

• mutag2mol : splits the Mutag dataset in the Prolog format into a collection of mol files3.

• mutag2sd : converts the Mutag dataset in the Prolog format into a sd file. This tool offers the
possibility to split the Mutag dataset into active/inactive compounds based on the activity file
provided with its Prolog description.

• sd2dots : creates a dot file for each molecule of an input sd file. Can be used for visualization
with graphviz tools (http://www.graphviz.org/)

3Note: the Mutag dataset is available in the chemcpp/data directory. It comes as the .tar.gz file with Prolog description
of the molecular structures.

5

3.1.2 Descriptors manipulation

• sd2descriptors : reads a sd file and outputs a ’;’ separated table with molecules names and de-
scriptors for all molecules of the sd file (missing values are indicated by ’NA’).

• sdadddescriptor : adds a descriptor to the molecules of an input sd file. An additional argument
must specify a file gathering the values of the descriptor to add for all the molecules of the input
sd file (-d option).

• sdaddgistclassify : adds descriptors corresponding to the output of the GIST classification pro-
gram4 ’gist-classify’ to the molecules of an input sd file. An additional argument must specify the
output file of ’gist-classify’(-d option).

• sdbinclassifyfromdescriptor : initializes an ’activity’ descriptor for the molecules of an input
sd file by thresholding the values of a specified descriptor. Additional arguments must specify
the name of the descriptor upon which the activity binarization is based, and the corresponding
threshold value (-d and -a options).

• sdqualify : adds a constant descriptor to all molecules in a sd file. Additional arguments must
specify the name, type and value of the constant descriptor type to be added (-n, -i, -f and -s
options).

3.1.3 Compound alteration

• molremovesalts: removes all but the largest connected graph in an input mol file and outputs two
mol files : <output name>.salts.mol and <output name>.noSalts.mol

• sdremovesalts: removes all but the largest connected graph in all entries of an input sd file.
outputs two sd files : <output name>.salts.sd and <output name>.noSalts.sd

3.1.4 Molecule set manipulation

• sd2gistactivity : creates the activity file of an input sd file in the GIST file format.

• sd2subset : extracts a subset of a input sd file. The molecules of the subset are specified by either
a list of molecule names (-l option), a single molecule name (-n option), or a number of
molecules (-u option, the subset is then made of the first molecules of the sd file). Outputs a
sd file. The sdremovesubset does the converse operation.

• sdexclude : removes from an input sd file the molecules identical to a set of specified molecules.
Note that the criterion of ’molecular identity’ is not based on the molecule names but involves
several filters (number of atoms, molecular weight, value of the graph kernel). An additional
argument must specify a sd file of molecules that are to be removed from the input sd file (-l
option).

4Note that the design of the different tools was motivated by the use of the GIST software to perform SVM classification.
More details in section 4 related to kernels computation.

6

• sdfiltermw : removes from the molecules of an input sd file those having a molecular weight
outside of a given range. Additional arguments must specify the range tolerated for the molecular
weight (-i and -a options). If the range is not specified, a ’molecular weight’ descriptor is
added to the molecules of the sd file.

• sdfilternumatoms : removes molecules of an input sd file having a number of atoms outside a
given range. Additional arguments must specify the range tolerated for the number of atoms (-i
and -a options). If the range is not specified, a ’number of atoms’ descriptor is added to the
molecules of the sd file.

• sdremovesubset : removes a subset of molecules from an input sd file. The molecules of the
subset are specified by either a list of molecule names (-l option), or a single molecule name
(-n option). Outputs a sd file. The sd2subset does the converse operation.

• sdremoveduplicates : removes duplicate molecules of an input sd file and outputs a sd file.

• sdsort : sorts the entries of an input sd file according to a given descriptor. An additional argument
must specify the sorting descriptor (-d option).

• sddescribe : displays a description of an input sd file.

• sdsplitfromdescriptor : splits an input sd file into a collection of sd files, according to the values
of a given integer descriptor. An additional argument must specify the splitting descriptor (-d
option).

• sdsplitfromgistclassify : splits an input sd file according to the output of the GIST classification
program ’gist-classify’. produces a couple of sd files gathering positive and negative compounds.
An additional argument must specify the output file of ’gist-classify’ (-d option).

• sd2atomGram: computes kernel values between the different types of atoms found in a sd file.
Usage:

OPTIONS
-m <input sd file> train set
[-s <input sd file> test set]
[-r remove H atoms]
-t <kernel type>: 1 = RBF ; 2 = triangle
[-p <value>] kernel parameter : bandwidth or cut-off percent

(default: 1, cannot be <= 0)
-c <property/ies> property/ies string: prop1-prop2-...-propN

NB: possible choices = Am;Vwr;Ar;Cr;Mp;Bp;Ea1;Ie1;
Enpauling;Enallred;Enabs

--> see chemcpp/data/elements.csv for their meaning
[-o <output file>]
(if ommited : output file = atomGram + kernelType + parameter value)

7

This tool computes a kernel matrix between atom types found in a dataset of molecules, specified
by the -m (and possibly -s) option(s)5 , based on atomic physicochemical properties. The out-
put of this tool is a file made of 109 lines (1 line per possible atom types ; each line gathering
109 kernel values separated by ’;’) that can be used in the sd2gram and sd2gram3Dpharma
tools using option -k, in order to replace the default "binary matching" between atoms based
on their types by a more flexible matching taking into account the similarity of atoms based on
physicochemical property/ies.
This tool starts by building a matrix X of size (n×p), each line gathering the values of the p prop-
erties specified in the command line using option -c, for the n different types of atom found in
the dataset. The values of the properties are read from the file chemcpp/data/elements.csv,
possible properties being: the atomic mass (Am), the van der Waals radius (Vwr), the atomic ra-
dius (Ar), the covalent radius (Cr), the melting point (Mp), the boiling point (Bp), the first electron
affinity (Ea1), the first ionization energy (Ie1), the electronegativity Pauling (Enpauling), the elec-
tronegativity Allred (Enallred) and the electronegativity Absolute (Enabs). Several properties can
be specified by giving option -c a string made of the different properties labels, separated
by the ’-’ delimiter, e.g., Vwr-Ar-Enpauling to consider simultaneously the Van der Waals
radius, atomic radius and electronegativity Pauling.
The matrix X is then standardized such that each column has a zero mean and a unity variance:

X[:, j] ← X[:, j] −mean(X[:, j])

std(X[:, j])
,

and a matrix D of size n × n gathering (Euclidean) distances between pairs of atom types is
computed:

D[i, j] = ||X[i, :] −X[j, :] || =

√

√

√

√

p
∑

k=1

(X[i, k] −X[j, k])2.

Finally, kernel values are computed from this distance matrix. Possible kernel functions are:

– a RBF kernel (option -t 1): K(i, j) = exp
(−D[i,j]2

2σ2

)

, where the parameter σ is speci-
fied by option -p.

– a triangular kernel (option -t 2): K(i, j) = C−D[i,j]
C

if D[i, j] ≤ C , 0 otherwise. The
cut-off value C is computed from the parameter given by option -p, which specifies the
amount of sparsity in the resulting atom-types kernel matrix. The value of the parameter
given by option -p is comprised between 0 and 1, and specifies the amount of kernel
values to be retained. For instance, using option -p 0.25 specifies to set 75% of the
kernel values between different atom types to zero, and the value of C is computed accord-
ingly. Therefore, the smaller the value specified by option -p, the smaller is C , and
therefore, the sparser is the kernel matrix. At the extreme where option -p 0, we get a
binary diagonal matrix. Conversely, with option -p 1, we get a full matrix. Note that the
sparsity of the matrix specified by option -k in the sd2gram and sd2gram3Dpharma
has an effect on the computational cost of the kernels (the sparser the matrix, the smaller is
the cost of computing the kernel, see [6] for a discussion).

5Note that option -m is required, and option -s can be used in a "test set" mode, as explained in Section 4.

8

The entries of the output file (specified by option -o) corresponding to pairs of atoms found
in the dataset are filled with the computed kernel values, and the remaining entries are set to 0.

3.2 Kernel matrices computation tools
The tools presented in this section are designed to compute kernel matrices for input datasets. Below is
a brief description of the different tools, section 4 is dedicated to their precise characterization.

• sd2gram, mol2gram, molsd2gram, mutag2gram, moblast: compute the marginalized kernel
[1], and proposed extensions [2] for different input files.

• sd2gramSpectrum: computes several walk-based graph kernel functions based on finite length
walks and a fast implementation for input sd file(s).

• sd2gramSubtree: computes several graph kernels based on the count of common subtrees [5] for
input sd file(s).

• sd2gram3Dpharma: computes the (exact) pharmacophore kernel [6] for input sd file(s).

• sd2gram3Dspectrum: computes the fast approximations of the pharmacophore kernel [6] for
input sd file(s).

3.3 Tools processing a similarity matrix
• gramraw2self : reads a raw gram matrix and writes diagonal elements to a file with the names of

the molecules.

• gram2diversity : reads a gram matrix and returns the mean distance of the points from their
barycenter in the feature space, which constitutes a particular diversity criterion of the dataset
according to the kernel function used to compute the kernel matrix.

– A kernel function k corresponds to a dot-product between the data mapped to a vector space
F (the so-called feature-space): k(x1, x2) = 〈φ(x1), φ(x2)〉. A distance in the feature-space
is therefore implicitly defined by the kernel function : dF (x1, x2) = ||φ(x1) − φ(x2)||2 =
k(x1, x1) + k(x2, x2) − 2k(x1, x2). The diversity of the dataset can be measured by the
average distance between the data points and their barycenter in the feature space. For a set
S = {x1, ..., xn}, this writes as D(S) = 1

n

∑

i dF (xi,M), where M is the center of mass
of S, i.e. M = 1

n

∑

i φ(xi). The diversity measure computed by gram2diversity is
therefore given by D(S) = 1

n

∑

i k(xi, xi)− 1
n2

∑

i,j k(xi, xj).

4 Computation of kernel matrices
The tools presented in this section are designed to compute kernel matrices for input datasets. They are
said to work in ’training mode’ if they take a single dataset as input and output a square kernel matrix,
gathering all pairwise kernel values for all molecules of the dataset. Conversely, they are said to work in
’testing mode’ if they take a pair of datasets as input and output a kernel matrix gathering all pairwise

9

kernel values between the molecules of the first dataset and the molecules of the second one.
More precisely :

• all sd2gram* tools take sd files as input: 1 sd file in ’training mode’, or 2 sd files in ’testing
mode’.

• the mol2gram tool takes one or two sets of mol files (located in specified directories) as input to
compute a kernel matrix in ’training’ or ’testing’ modes.

• the molsd2gramoutputs a kernel matrix gathering all pairwise kernel values between the molecules
of a sd file and that of a set of mol files, and is therefore working in ’testing mode’ only.

• the mutag2gram outputs a square kernel matrix gathering all pairwise kernel values between the
molecules of the Mutag dataset in the Prolog format, and is therefore working in ’training mode’
only.

These tools input options are arranged in four categories : Input, Preprocessing, Kernel and Output
options. The Kernel options depend on the tool, but the other options are common to all the tools. More
precisely :

• the Input options specify the input data :

INPUT OPTIONS
-m <file name>
[-s <file name to compare with>]
(if ommited: gram matrix of the molecules in the -m directory)

[-z <format>] file format of input files. (default: mol/sd)
allowed values: mol/sd, genericmol/genericsd, kcf
note: -k cannot be used when the input file is

genericmol/genericsd or kcf

The -m option specifies the first (required) source of input data. It consists of a sd file for
most of the tools (all sd2gram* tools), but can be a directory of mol files (mol2gram and
molsd2gram tools), or the Prolog file representing the Mutag dataset (mutag2gram). The
-s option specifies the second source of input data in ’testing mode’ configuration. It is op-
tional for most of the tools (all sd2gram* tools and the mol2gram tool), but required for the
mutagsd2gram tool, and prohibited for the mutag2gram tool. The -z option specifies the
format of the input data (can be sd/mol, KCF6, or ’generic’)

• the Preprocessing options enable to perform various operations on the molecules before the ker-
nel computation :

PREPROCESSING
[-r remove H atoms]
[-i <anOrder>] introduce Morgan index labels of order i

6See http://web.kuicr.kyoto-u.ac.jp/simcomp/doc/keggatom.html for more details.

10

The -r option specifies to remove the Hydrogen atoms from the molecules. The -i option
has the effect of introducing Morgan indices computed at the given anOrder into the labels of
the atoms (see [2] for more details).

• finally, the Output options are related to the output of the methods :

OUTPUT OPTIONS:
[-y silent mode]
[-o <output directory>]
(if ommited: current location is used)

[-b <base name>]
(if ommited : base name = name of the tool ex: ’sd2gram’)

The -y option is a flag indicating to turn to ’silent mode’ (i.e., to reduce the verbose). The
-o option specifies the output directory to write the various output files. By default, the output
files are written in the current directory. The -b option specifies the ’base name’ of the various
output files, a common prefix to all output files. A default base name value is proposed for each
tool (which is ’sd2gram’ in the above example corresponding to the sd2gram tool). Use option
-h for more details.

Chemcpp tools output the following files, where *** stands for the ’base name’ of the output files,
specified by the -b option:

• a ***.gramRaw file containing the computed kernel matrix

• a ***.gramNormalfile containing a normalized version of the kernel matrix, using the follow-
ing normalization scheme : K̃[i][j] = K[i][j]√

K[i][i]K[j][j]

• a ***.train_self file containing the self kernel values of the dataset of molecules specified
by the -m option, and possibly a ***.test_self file containing the self kernel values of the
dataset of molecules specified by the -s option in ’testing mode’ configuration.

Note that these tools were designed to build kernel matrices to be used as input to the GIST classifi-
cation program7. Please refer to this software website for more details about the file format. Note finally
that this file format is compatible with the more recent python PyML8 machine learning package. We
now turn on a detailed characterization of the different tools for computing kernel matrices. We detail
the kernel functions computed and the corresponding Kernel options field.

4.1 sd2gram, mol2gram, molsd2gram, mutag2gram
These four tools compute the marginalized kernel [1] and its proposed extensions [2] for various input
files:

7Available at http://microarray.cpmc.columbia.edu/gist/.
8Available at http://pyml.sourceforge.net/.

11

• sd2gram : takes one or two sd files in input (’training/testing’ modes respectively).

• mol2gram : takes one or two sets of mol files in input (’training/testing’ modes respectively).

• molsd2gram : takes a sd file and a set of mol files in input (’testing’ mode).

• mutag2gram : takes the Prolog Mutag dataset in input (’training’ mode).

They are based on the same following kernel options :

KERNEL OPTIONS
[-q <stop prob>] (0 > q < 1, default = 0.1)
[-c <convergence condition>] (default = 1000)
[-k <atom Kernel matrix>] (default: identity matrix)
WARNING this option cannot be specified when -i is specified

[-g filter the ’tottering paths’]

We first briefly recall the marginalized kernel formulation. The molecules read from the input
dataset(s) are here seen as labeled graphs corresponding to their 2D structures (atoms + covalent bonds).
More formally, a labeled graph G is defined by :

• a set of vertices VG = (v1, ..., v|G|), where |G| is the number of vertices of G (in our case, the
number of atoms of the molecule)

• a set of edges EG ∈ VG × VG, that connect pairs of vertices (in our case it corresponds to the set
of covalent bonds of the molecule)

• a labeling function L that assigns a label to any vertex or edge of the graph. In our case, the
vertices of the graphs are labeled by the type of their corresponding atoms (that is, C, H, O...),
and the edges labels correspond to the degree of the covalent bonds (single, double, aromatic...)

Moreover we introduce the following definitions:

• h = (v0, .., vn) is a walk of length n in the graph G if it is defined as a set of n + 1 connected
vertices : vi ∈ VG, 0 ≤ i ≤ n , (vi, vi+1) ∈ E(G), 0 ≤ i ≤ n− 1.

• H(G) is the whole set of walks of the graph G

• we extend the vertex/edge labeling function L to the walks of the graphs : the label of a walk is
defined as the concatenation of the labels of the vertices and edges it is made of.

For the pair of graphs G and G′, the marginalized kernel defines as:

K(G,G′) =
∑

h∈H(G)

∑

h′∈H(G′)

pG(h)pG′(h′)KWalk(L(h),L(h′)) (1)

12

where pG (resp. pG′) is a probability distribution over H(G) (resp. H(G′)), and KWalk is a kernel
between walk labels.

Specifying the kernel therefore resumes to choosing the probability distributions and the kernel
between walks KWalk. By default, the sd2gram tool implementation follows the parametrization
proposed in [1]:

• the walk probabilities are defined by a first order random walk model which is completely defined
by a single parameter: the random walk ending parameter (called pq in [1]). This parameter
is specified by option -q (default value is 0.1). Please refer to [1] for the definition of the
random walk model.

• the kernel between walks KWalk is a Dirac kernel : pairs of walks are given a perfect similarity if
they have the same label, and null otherwise.

and the kernel is computed by the iterative method proposed in [1]. The corresponding convergence
condition is given in option -c: the algorithm stops when the kernel value does not change by more
than 1/c, where c is the value specified by the -c option.

Computing the kernel proposed as it proposed in [1] (i.e., using a Dirac walk kernel and the particular
random walk mode described in the paper) therefore simply requires the options -q and -c. However,
the sd2gram tools offers several other options :

• option -k offers the possibility to specify a matrix of kernel values between different atom
types. This has the effect of replacing the Dirac kernel between atom types implicitly involved
in the Dirac walk kernel KWalk (see eqs 7.4 and 7.6 in [1]) by a more flexible kernel. As
a result, the similarity between walks is not binary anymore. The directory chemcpp/data
gathers possible input matrices, and the R script chemcpp/data/makeGramAtoms.Rmakes
it possible to compute other based on atomic physicochemical properties (please refer to the
chemcpp/data/README file for more details about the required file format). Alternatively,
the sd2atomGram tool makes it possible to compute such kernel matrices for the types of atoms
actually found in a sd file, based on simple kernel functions (RBF and triangular) and general
physicochemical properties of atoms.

• option -g filters the "tottering paths" from the kernel. Please refer to [2] for more details about
tottering paths and the way to filter them from the kernel. This option removes a set of features
thought to be noisy from the kernel, and was proposed as a way to increase the expressive power
of the kernel. Note however that this comes at the expense of an increase in the cost of computing
the kernel. Moreover, recall that option -i implements the second extension based on Morgan
indices that was proposed in [2]. Note however that this tool does not implement the kernel com-
putation based on product-graphs and does not fully benefit from the gains in computation times
that could be obtained using Morgan indices.

13

4.2 sd2gramSpectrum
This tool implements several walk-based kernel for graphs corresponding to the 2D structure (atoms and
covalent bonds) of the molecule, based on the following options:

KERNEL OPTIONS
-l <n> kernel involving paths of length only n
-u <n> kernel involving paths of length until n
[-t <kernel type>]
(if ommited, t = 0)
-t = 0 : Spectrum kernel
-t = 1 : Tanimoto Kernel
-t = 2 : Min/Max Tanimoto Kernel
-t = 3 : Marginalized kernel approximation
-t = 4 : Lambda^k kernel

[-p <kernel parameter>]
-if t = 3 --> p = ending probability pq (0 < p < 1)
(if ommited : p = 0.1)

-if t = 4 --> Lambda parameter
(if ommited : p = 1 <--> choosing t = 0)

These kernels are based on sets of molecular fragments : sequences of atoms connected by covalent
bonds. A labeled walk of a graph therefore corresponds to a particular molecular fragment. In oppo-
sition to the marginalized kernel formulation (based on an infinite sum of walks), the set of molecular
fragments considered in the kernels is finite, and for the pair of graphs G and G ′, these kernels formulate
as :

K(G,G′) =
∑

p∈P

φG(p)φG′(p) (2)

where P is the set of molecular fragments taken into account in the kernels, and φG(p) is the weight
given to the molecular fragment p in the graph G. Note that this formulation corresponds to a dot prod-
uct in a feature space indexed by P , and leads to positive definite kernels.

The set of molecular fragments P defines the feature space corresponding to the kernels and is
determined by the options -l and -u :

• option -l <n>, "only n", defines P as the set of possible molecular fragments of length n
(i.e., fragments defined by n + 1 types of atoms + n types of covalent bonds).

• option -u <n>, "until n", defines P as the set of possible molecular fragments of length
ranging from 0 to n.

(Note that the different types of atoms and bonds that define the set of possible molecular fragments are
determined by the types of atoms and bonds that can be found in the input dataset(s))

The kernel function itself is defined by the molecular fragment weighting function φ, which is de-
termined by the option -t, that takes values in {0, 1, 2, 3, 4} (note that we keep the notations introduced

14

in the previous subsection to represent graphs : H(G) represents the walks of the graph G, and L is the
graph labeling function extended toH(G)):

• option -t = 0 corresponds to the so-called spectrum kernel. The function φ counts the number
of times the molecular fragment are found in the graphs :

φG(p) = #{p ∈ G} =
∑

h∈H(G)

1(L(h) = p)

• option -t = 1 corresponds to the Tanimoto kernel introduced in [3]. φ is a binary functional
indicating whether or not the molecular fragments are found in the graphs :

φG(p) = 1(p ∈ G)

In this case, the output .gramRawfile is the kernel matrix corresponding to the kernel of equation
(2): the dot product between binary vectors φG and φG′ defined above. The "true" Tanimoto kernel
matrix is given by the output .gramNormal file, which can be seen as a particular normalized
version of the .gramRaw kernel matrix :

K̃[i][j] =
K[i][j]

K[i][i] + K[j][j] −K[i][j]

• option -t = 2 corresponds to the "Min/Max" Tanimoto kernel introduced in [3]. This kernel is
a variation of the Tanimoto kernel presented above. Please refer to the reference paper for more
details. Note that the "true" Min/Max Tanimoto kernel is given by the output .gramNormalfile.

• option -t = 3 corresponds to an approximation of the marginalized kernel [1] when it is parametrized
by a Dirac kernel to compare labeled walks. Walks of the graphs are considered as realization of
the random walk process proposed in [1], where the stop-probability parameter pq is specified by
the option -p. The functional φ weights a molecular fragment by the sum of the probabilities
of the walks of the graph that have the corresponding label :

φG(p) =
∑

h∈H(G)

pG(h)1(L(h) = p)

Note that in the "until n" case (option -u), this kernel is equivalent to the marginalized kernel,
where the summation over the walks is limited to the walks having a length up to n. At the limit,
this kernel is therefore identical to the marginalized kernel (nb : when it is parametrized by a
Dirac walk kernel). Note however that because of the random walks process, walks probabilities
exponentially decrease with their length. Long walks are therefore barely taken into account in
the marginalized kernel formulation and it makes sense to limit the length of the walks.

• option -t 4 corresponds to the so-called lambda-k kernel:

φG(p) =
∑

h∈H(G)

λ|p|
1(L(h) = p),

15

where the parameter λ is specified by the option -p, and |p| is the number of atoms of the molec-
ular fragment p. This kernel can be seen as a generalization of the spectrum kernel, where paths
are not only counted but also weighted. Indeed, in the case where λ equals one, this kernel corre-
sponds exactly to the spectrum kernel, but a value of λ greater (resp. smaller) than one stresses the
influence of long (resp. short) walks. Alternatively, it can be seen as a variation of the marginalized
kernel approximation discussed previously, where the probabilistic model is replaced by a simple
walks weighting scheme. Finally, in the "until n" case (option -u), this kernel constitutes an
approximation to the geometric kernel introduced in [4], where the infinite summation over walks
length is replaced by a finite one, just as in the previous approximation of the marginalized kernel.

Note importantly that the set of walks of the graphs considered in these kernels (i.e., H(G) for the
graph G in the above equations) is restricted to the non-tottering ones. See [2] for a precise definition
of non-tottering walks. The alternative sd2gramSpectrum-TOTTERING.cpp program located in
the chemcpp/tools/sdgramSpectrum enables to consider tottering walks as well: just rename
sd2gramSpectrum-TOTTERING.cpp into sd2gramSpectrum.cpp and run make in order to
switch to this "tottering" formulation.

These kernels benefit from a fast implementation that circumvent the limitations of walk kernels
based on infinite sum of walks such as the marginalized [1] or geometric/exponential[4]. This imple-
mentation is derived from that of spectrum kernels for string[7].

4.3 sd2gramSubtree
This tools computes several graph kernels based on the detection of common subtrees: the so-called
tree-pattern graph kernels, originally introduced in [8], and revisited in [5]. The sd2gramSubtree
tool computes the different kernels proposed in [5], based on the following parameters:

KERNEL OPTIONS
[-t <kernel-type>]
-t = 0 : size-based subtree penalization
-t = 1 : branching-based subtree penalization
(if ommited, t=0)

[-l <depthMax>] tree-patterns of depth = depthMax
(if ommited, depthMax = 3)

[-p <lambda>] weighted contribution of tree-patterns depending on their sizes
(if ommited: lambda = 1)
(NB: increasing lambda favors patterns of increasing complexity)

[-g filter the ’tottering tree-patterns’]
[-u consider ’until N tree-patterns’]
WARNING can only be used in conjunction with option -t = 1

This class of kernel constitutes an extension of the kernels based on the count of common walks im-
plemented by the sd2gramSpectrum tool, where common subtrees are detected instead of common

16

walks. For more details about the kernel definitions, please refer to [5], the usage of this tool should be
clear after wards. A pseudo-code of this tool is given in Pierre Mahé’s PhD thesis9 .

Note that by default this tool computes a kernel based on tree-patterns of a given length, specified by
option -l <depthMax>. However, since the implementation is based on dynamic programming,
all kernels computed based on patterns of depth = 1 to depth = depthMax (where depthMax is specified
by option -l) can be obtained at no extra cost. The alternative sd2gramSubtree-ALL-ORDERS.cpp
program located in the chemcpp/tools/sdgramSubtree enables to do so (just rename
sd2gramSubtree-ALL-ORDERS.cpp in sd2gramSubtree.cpp and run make).

4.4 sd2gram3Dpharma
This tool implements the (exact version of) pharmacophore kernel for 3D structures of molecules pro-
posed in [6]. Molecules are here represented by the 3D coordinates of their atoms, which are read from
the input dataset(s). The kernel is based on the following set of options :

KERNEL OPTIONS
[-k <atom Kernel matrix>] (default: identity matrix)

WARNING this option cannot be specified when -i is specified
[-e <edge kernel type>]
(if ommited, e = 1)
- e=1 : RBF kernel

(option ’p’ = bandwidth sigma)
- e=2 : triangular kernel

(option ’p’ = threshold C)
[-p <edge kernel parameter>]
(if ommited = value of 1.0 is used)

[-g <file name> chargesFileName no1]
WARNING this option cannot be used in conjunction with option -k

[-j <file name> chargesFileName no2]
- required if (-s + -g) options is specified

[-d <threshold on partial charges>]
- if ommited : threshold = 0.0

This tool was designed to compute the kernel matrices involved in the experimental section of the
paper [6]. Options can be arranged in three categories:

• options to specify the kernel function comparing distances between atoms:

– option -e specifies the kernel function:

∗ option -e 1: RBF kernel: K(d, d′) = exp −(d−d′)2

2σ2

∗ option -e 2: Triangular kernel: K(d, d′) = C−|d−d′|
C

if |d− d′| ≤ C; 0 otherwise
9Available at http://cbio.ensmp.fr, or upon request to jean-philippe.vert@ensmp.fr

17

– option -p specifies the parameter associated to these kernels : the bandwidth (σ) of the
RBF kernel, or the cut off (C) of the triangular kernel. Default values are given, refer to the
usage with option -h.

• options to specify the kernel function to compare the atoms. By default, the kernel is based on a
binary matching between atom types, possibly enriched by Morgan indices (with option -i),
or the sign of their partial charges (with options -g/j/d, see below). However, it is possible
to rely on physicochemical properties instead of atom types to compare atoms, as it is suggested in
[6]. This can be done by specifying a kernel matrix between atom types using option -k. Such
a matrix comes as a set of 109 lines (1 atom per line), where each line gathers 109 kernel values
(comparing pairs of atom types) separated by ";". The sd2atomGram enables to automatically
compute simple atom-types kernel matrix (using a RBF or triangular kernel) based on standard
physicochemical properties. However, it is worth mentioning that preliminary experiments (see
[6]) tend to indicate that characterizing atoms by general physicochemical properties does not bear
additional information to simply considering their types. This actually makes sense because these
properties are directly defined from the atom types and thus do not depend on the molecule itself,
in opposition to partial charges for instance.

• options to specify the partial charges of the atoms:

– option -g specifies the file gathering the atomic partial charges of the molecules of the
dataset given by option -m (see the "Input options" section). This option can’t be used in
conjunction with option -k. Each line of this file corresponds to a molecule of the input
dataset, and gathers the values of the partial charges of the atoms separated by a ’;’.

– option -j specifies the file gathering the atomic partial charges of the molecules of the
dataset given by option -s (see the "Input options" section). It is required when option
-g and option -s are simultaneously specified.

– option -d specifies a threshold above which partial charges are considered as positive/negative.
By default this threshold is zero, and every positive (resp. negative) partial charge is seen as
a positive (resp. negative) charge. However, it might be interesting to consider a threshold
of 0.2 for example, in which case only partial charges greater than 0.2 (resp. smaller than
−0.2) would be seen as positive (resp. negative).

In the experiments presented in [6], a RBF kernel is used to compare inter-atomic distances, which
is the more natural choice. As mentioned in the paper, the main interest of choosing a triangular kernel
lies in the fact that it might improve the algorithm from the computational point of view, if sparse matrix
algorithms were available to compute the kernel, which is not the case for the moment. Moreover, exper-
iments suggest that partial charges increase the description of the atoms from the pharmacophore point
of view. When partial charges are available, they should therefore be specified using options -g (and -j
in a ’testing mode’ configuration). Note finally that option -d may be relevant to introduce constraint
on a minimum magnitude of the partial charges, but this did not lead to significant improvements in our
experiments.

18

From these preliminary experiments, a safe default choice for this tool would be to use option -e
1 + option -p 0.1, with the additional specification of partial charges, if available, with options
-g and -j.

4.5 sd2gram3Dspectrum
This tool implements the six discrete approximations of the pharmacophore kernel presented in [6]. It is
based on the following options :
KERNEL OPTIONS
[-t <kernel type>]
(if ommited, t = 0)
-t = 0 : 3-points spectrum kernel
-t = 1 : 3-points binary kernel
-t = 2 : 3-points Tanimoto kernel
-t = 3 : 2-points spectrum kernel
-t = 4 : 2-points binary kernel
-t = 5 : 2-points Tanimoto kernel

[-p <bins>] number of bins used to discretize the inter-atomic lengths
(if ommited p = 20)

[-f <distMin>] minimum distance for inter-atomic distance range
(if ommited distMin = 0)

[-u <distMax>] maximum distance for inter-atomic distance range
(if ommited distMax = 20 angstroms)

[-c <fileName>] atomic partial charges (--> label = AtomType + {+/0/-})
[-d <fileName>] 2nd atomic partial charges files (if -s option specified)
[-v <threshold>] threshold value to consider +/- atoms charges
(if ommited : v = 0.0)

The usage is quite simple (see the reference paper, section 6 for more details) :
• option -t specifies one of the 6 proposed approximations

• option -p specifies the number of bins used in the discretization of the space of pharma-
cophores

• option -f and option -u specify the range of inter-atomic distances considered in the dis-
cretization. By default, the 0-20 angstroms range is used. Note that only pairs of atoms entering
this distance range are taken into account in the pharmacophore characterization of molecules

• option -c specifies the file gathering the atomic partial charges of the molecules of the dataset
given by option -m (see the "Input options" section). Each line of this file corresponds to a
molecule of the input dataset, and gathers the values of the partial charges of the atoms separated
by a ’;’

• option -d specifies the file gathering the atomic partial charges of the molecules of the dataset
given by option -s if it is specified (see the "Input options" section). This option is required if
options -s and -c are specified simultaneously

19

• option -v specifies a threshold above which partial charges are considered as positive/negative.
By default this threshold is zero, and every positive (resp. negative) partial charge is seen as a pos-
itive (resp. negative) charge. However, it might be interesting to consider a threshold of 0.2 for
example, in which case only partial charges greater than 0.2 (resp. smaller than −0.2) would be
seen as positive (resp. negative)

Note that in practice, we observed that an adequate value for the number of bins was between 20 and
30.

A Modification of the library and creating new tools
To introduce new functionalities in the ChemCpp library, you simply need to modify the source classes
of the chemcpp/src directory and rebuild the library. Note that while the make command in the
chemcpp builds the whole project (i.e., library + tools), the make in the chemcpp/src directory
simply builds the library.

The process of creating a new ’tool’ can be summarized as follows :

• open the file chemcpp/chemcpp.kdevelopwith KDEvelop10

• in the viewmenu of KDEvelop, select "Tool Views/show Automake manager". A tab
named Automake manager will be opened in the right hand side of the KDEvelop window,
see figure 1, top left.

• right-click on the tools directory in the upper part of the Automake manager tab, choose the
Add subproject option, and give name to the new tool, say myNewTool. This will create a
subdirectory myNewTool in the tools directory.

• right-click on the newly created myNewTool directory, and choose the Add target option.
Choose Program and Bin to indicate that the target is an executable, and repeat myNewTool
for the name of the target, see figure 1, top right.

• right-click on the myNewTool directory a second time, choose the Options option. In the
Compiler tab, indicate -lpthread -lchemcpp -L../../src/ in the CXX flagsfield
(this indicates that the chemcpp/src/libchemcpp.so library must be included in the com-
pilation), and in the include tab, choose to include the src directory, see figure 1, bottom
left.

• right-click on the previously created myNewTool target in the bottom part of the Automake
manager tab, and choose Create new file option. Choose C++ source, and name the
file myNewTool.cpp, see figure 1, bottom right.

• choose Run Automake and friends in the Buildmenu of KDEvelop to create the appro-
priated makefiles.

10The following process can be carried out manually, but KDEvelop makes the task much easier.

20

Table 1: KDEvelop screenshots of the process of creating a new tool described in section A

• eventually, create a symbolic link in the chemcpp/bin directory. In the chemcpp/bin direc-
tory, type : ln -s myNewTool ../tools/myNewTool/myNewTool

The last step is to fill in the chemcpp/tools/myNewTool/myNewTool.cpp source file.

21

References
[1] H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for graphs. In B. Schölkopf, K. Tsuda, and J.P.

Vert, editors, Kernel Methods in Computational Biology, pages 155–170. MIT Press, 2004.

[2] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Graph kernels for molecular structure-
activity relationship analysis with support vector machines. J Chem Inf Model, 45(4):939–51, 2005.

[3] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical informatics.
Neural Netw., 18(8):1093–1110, Sep 2005.

[4] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: hardness results and efficient alternatives.
In B. Schölkopf and M. Warmuth, editors, Proceedings of the Sixteenth Annual Conference on
Computational Learning Theory and the Seventh Annual Workshop on Kernel Machines, volume
2777 of Lecture Notes in Computer Science, pages 129–143, Heidelberg, 2003.

[5] P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for molecules. Technical Report
Technical report HAL:ccsd-00095488, Ecoles des Mines de Paris, September 2006.

[6] P. Mahé, L. Ralaivola, V. Stoven, and J.-P. Vert. The pharmacophore kernel for virtual screening
with support vector machines. Technical Report Technical Report HAL:ccsd-00020066, Ecole des
Mines de Paris, march 2006.

[7] C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: a string kernel for SVM protein clas-
sification. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Kevin Lauerdale, and Teri E.
Klein, editors, Proceedings of the Pacific Symposium on Biocomputing 2002, pages 564–575. World
Scientific, 2002.

[8] J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In T. Washio and
L. De Raedt, editors, Proceedings of the First International Workshop on Mining Graphs, Trees
and Sequences, pages 65–74, 2003.

22

